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Abstract- --Analytical formulations are presented which account for the coupled mechanical, elec
trical, and thermal response of piezoelectric composite laminates and plate structures. A robust
layerwise theory is formulated with the inherent capability to explicitly model the active and sensory
response of piezoelectric composite plates having general laminations in thermal environments.
Finite element equations are derived and implemented for a bilinear 4-noded plate element. Appli
cations demonstrate the capability to manage thermally induced bending and twisting deformations
in symmetric and antisymmetric composite plates with piezoelectric actuators and attain thermal
stability. The resultant stresses in the thermal piezoelectric composite laminates are also investigated.
Published by Elsevier Science Ltd.

I. INTRODUCTION

The development of piezoelectric composite materials offers great potential for use in
advanced aerospace structural applications. By taking advantage of the direct and converse
piezoelectric effects, piezoelectric composite structures can combine the traditional per
formance advantages of composite laminates along with the inherent capability of piezo
electric materials to adapt to their current environment. Extensive development ofanalytical
methods for modeling the isothermal behavior of piezoelectric composite structures has
been reported. The initial application of piezoelectric materials as actuators involved the
vibration control of beams [Bailey and Hubbard (1985) ; Crawley and de Luis (1987)] and
led to the development of simplified models for beams. Advances in theoretical models led
to both a piezoelectric plate theory [Lee (1990); Wang and Rogers (1991)] and a pie
zoelectric thin shell theory [Tzou and Gadre (1989)], based on the assumptions of classical
plate and shell theory, respectively. Subsequent developments led to a variety of finite
element formulations for beam [Robbins and Reddy (1991) ; Shieh (1994)], plate [Chan
drashekhara and Agarwal (1993); Hwang and Park (1993)], shell [Lammering (1991);
Tzou and Ye (I 994a)], and solid [Allik and Hughes (1970); Tzou and Tseng (1990); Ha et
al. (1992)] elements.

Additional approaches have been reported on refined piezoelectric laminate theories
which overcome the limitations of classical or other "single-layer" laminate theories [Reddy
(1987, 1993)]. These approaches, called discrete layer theories, provide a generalization of
both the classical and higher order theories, and allow separate displacement fields to be
assumed in each layer of the laminate. A discrete layer beam theory for analyzing piezo
electric beams was first reported by Robbins and Reddy (1991) using an induced strain
approach to approximate the piezoelectric effect. Heyliger et az' (1994) and Saravanos and
Heyliger (1995, 1996) subsequently presented discrete layer beam and plate theories
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explicitly accounting for the coupled equations of piezoelectricity, which have led to gen
eralized multi-field finite element formulations.

All of the previously described works neglect the implication of thermal effects on both
the active and sensory response of piezoelectric structures, even though an area where
piezoelectric materials may provide dramatic advantages is in the development of smart
thermal structures with the capability to sense and actively compensate for thermally
induced deformations. Thermal loads will typically affect the response of smart piezoelectric
laminates with four distinct physical mechanisms: (I) induction of thermal strains due
to coefficient of thermal expansion mismatch between the various composite plies and
piezoelectric layers, (2) pyroelectric effects on the electric displacement of the piezoelectric
materiaL (3) changes in the piezoelectric and dielectric properties of the piezoelectric
materials, and (4) changes in the elastic properties of the composite and piezoelectric
materials. Only limited research has been reported in this area. Two-dimensional thermo
piezoelectric equatioll5 for plates was formulated by Mindlin (1974). A thermo
piezoelectric laminate plate theory and a thin shell theory, based on classical assumptions,
were reported by Tauchert (\ 992) and Tzou and Howard (1994), respectively. Subsequent
developments in thermopiezoelectric finite elements include a beam element by Rao and
Sunar (1993), a shell element using induced strain approximations for the electric and
thermal effects by Chandrashekhara and Kolli (1995), a solid element using an induced
thermal strain approach by Ha et al. (1992), and a thin solid element by Tzou and Ye
(1994b). Many of these previous approaches utilize simplified laminate assumptions and
neglect the coupling effects existing in thermopiezoelectric laminates. To remedy these
limitations, generalized discrete layer approaches for smart thermopiezoelectric beam struc
tures were reported by Lee and Saravanos (\ 995, 1996).

This paper presents generalized discrete layer mechanics for the analysis of smart
thermopiezoelectric plate structures, and addresses the problem of active thermal distortion
management with smart piezoelectric plates. The mechanics accounts for the coupled
mechanical, electrical, and thermal response of piezoelectric laminates at the material
level through the thermopiezoelectric constitutive equations. The displacements, electric
potential and temperature are assumed to be layerwise (piecewise continuous) fields through
the laminate thickness. This layerwise generalization provides the capability to capture the
locally induced piezoelectric and thermal effects, which leads to increased accuracy in
predicting the thermal response of piezoelectric composite plates (especially for thick
laminates and laminates with strong thermal, piezoelectric and elastic inhomogeneities
through-the-thickness). A corresponding finite element formulation is presented using the
layerwise laminate theory and a 4-noded plate element is developed. Numerical studies
demonstrate the capability to actively manage thermally induced twisting and bending
deformations in piezoelectric symmetric and antisymmetric composite plates subjected to
thermal gradients, as well as examining the corresponding voltage response of piezoelectric
sensors and the resulting intralaminar and interlaminar stresses in active thermo
piezoelectric plates.

2. GOVERNING MATERIAL EQUATIONS

This section outlines the governing equations for thermopiezoelectric materials. The
mechanical response is represented by the stress-equilibrium equation,

pai = (Jljj +f, i,j = 1,2,3 (I)

where p, Uh (J1j,.J: are the density, displacement, stress, and body force per unit volume,
respectively. The electrical response is governed by Maxwell's equation for the conservation
of electric displacements D i,

D ii = 0, i = 1,2,3. (2)

The constitutive equations for a thermopiezoelectric material [Nye (1964)] em;Jloying
standard contracted notation are



or in semi-inverted form
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(3)

(4)

(5)

(6)

where IX, f3 = I, ... , 6; and k, m = I, 2, 3; Sx represents the strain tensor; E", the electric
field vector, & = !'1T = T - To is the temperature difference from the current temperature T
and the stress free reference temperature To; C,!! and S,/i are the elastic stiffness and
compliance tensors; d,m and e,,,, are the different forms of the piezoelectric tensor; 1',,,,, is
the electric permittivity tensor; IX, and Ax are the different forms of the coefficient of thermal
expansion; Pm is the pyroelectric constant; superscripts £, a, S, and T, represent constant
voltage, stress, strain, and temperature conditions, respectively. The matrices in eqs (3--4)
and (5-6) are related as follows,

e;m(T) = C!;/(T)d~",(T)£m

A~·s(T) = C!;j/(T)Cl.f"(T)

e~;[(T) = I',~;[(T) -d:"(T)e~,(T)

P~'s (T) = p~; T (T) - d,;,~ (T)/.!;·" ( T).

The small deformation strain-displacement relations are

and the electric field vector is related to the electric potential 1> by

£, = -1>./.

(7)

(8)

(9)

Through use of the divergence theorem and neglecting body forces, eqs (1) and (2) can be
expressed in an equivalent variational form as

(10)

where t, are the surface tractions applied on the bounding surface r; q is the electrical
charge applied on the surface r p of the piezoelectric material; and V represents the whole
volume including both composite and piezoelectric materials.

3. DISCRETE LAYER LAMINATE THEORY

A discrete layer laminate theory for thermopiezoelectric composite plates is formulated
by introducing the following piecewise continuous approximations for the state variables
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IV

u(x, y, z, t) = I u'(x, y, t)l/l(z)
i~ 1

IV

v(x,y,z,t) = I vi(x,y,t)lj;'(z)
i~1

w(x,y,z, t) = w"(x,y, t)

IV

¢(x,y,z,t) = L ¢i(x,y,t)lj;/(z)
/~ I

N

8(z, t) = L 81(t)lj;i(z)
/~ I

(11)

(12)

(13)

(14)

(15)

where ui , Vi, w", ¢i and 8i are the generalized laminate state variables, j = 1, ... , N; and
lj;i are interpolation functions which are currently represented using linear Lagrangian
interpolation functions, although in general any order of interpolation functions can be
used. By substituting egs (5)~(9) and (11)-(15) into egn (10) and integrating through-the
thickness, the following generalized variational form is obtained.

£ £ f (P17 ii"'(5uk +P;rgi/"(5Ll)dA+f PB }i)"(5w"dA
k~ 1 "'~ 1 A A

+f rCwo.(5wO.+ C(w°(5wo.+w°(5wO) +Cw" (5wo.}dAl 44 ..1 •.1 45 .:\ ,.I ,)~ _.\ 5 5,x ..x
A

IV f"' {_['" (5u"'-['" (5v n:+q'" (5A."'+q'" (5 A.'" +q"'. (5A."'}dA1..J .' th l .X . th].) th l "P,x lh] 0/,) till '+'
m=l A

(16)

in which the dependence of the z-coordinate has been separaled into the generalized
laminate matrices. The density matrix [PJ, the stiffness matrices [AJ, [BJ, [C], [D], the
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piezoelectric matrix [E], and the dielectric permittivity matrix [G] have been presented
previously in a general form by Heyliger el al. (1994). The newly derived thermal force
matrices L/;h] and [q,h] are

(17)

(18)

for i = 1 and 2, while

(19)

where L represents the number of piezoelectric layers and composite plies.

4. FINITE ELEMENT FORMULATION

The finite element formulation for a composite piezoelectric plate is obtained by
incorporating additional local in-plane approximations to the generalized state variables
introduced by eqns (11)-(14),

M

<uj(x,y, t); vj(x,y, I); WO(x,y, I); ¢j(x,y, t) = I <Uii(t); V1i(t); WOi(t); ¢ii(t)R'(x,y)
i= 1

(20)

where M is the number of in-plane functions R. Currently, R is represented using bilinear
Lagrangian interpolation functions in the formulated 4-node element.

By combining eqn (20) with the variational statement eqn (16), the following finite
element matrix formulation is obtained for the case of a constant through-the-thickness
displacement plate

[Mil] 0 0 0

r
Ol

)

[Kid [Kd [KI3 ] [K I4 ]

r
UI

0 [Md 0 0 C'} [K2I ] [Kd [K23 ] [K24 ] { V}

0 0 [M33 ] 0 {~} + [K3 d [Kd [K33 ] 0 {W}

0 0 0 0 {<i'>} [K4 d [Kd 0 [K44 ] {<D}

el

) r'''')){F2 } {F2Jh )
(21 )= +

{F3 } 0

lQ} {Qld

where the elements of the submatrices above are calculated in accordance with the gen
eralized discrete layer laminate matrices defined previously. The finite element sub-matrices
for the mass [M], stiffness [K], and external force [F] and [Q] have been presented previously
in a general form by Heyliger et al. (1994). The newly derived sub-matrices for the thermal
force [Flh] and [Qlh] are
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P - f aw(x,y)
[Fill] 1 - . .fril, ~ dA

4 ox

r { aRP i3RI' }
[QII,]P = q'h, --::;--.... +q'iI':1. +q,/,.,W dA.ex . uV

"A f • ~

(22)

(23)

(24)

The coupled finite element formulation can also be expressed in a compact form with the
electric potential partitioned into active and sensory components such that

Ol{{~} }+ i[K",,]
oj [<I>'} L[K:!:,,]

(25)

where the superscripts s and a indicate the partitioned electric potential vectors in either
sensory or active configurations, respectively. This form has the advantage of positioning
the unknown variables (displacements and sensory electric potentials) in the left-hand
terms, while the known quantities (mechanical loads, thermal loads, electric charges, and
active voltages) are included in the right-hand terms. The partitioned finite element for
mulation of eqn (25) can be easily uncoupled into the following independent eq uations for
the structural displacements

and the sensory electric potentials

f <I> v'( = _ [K"",] -I ([K'" ] f U, + [K'''', ] {<I>" 1, _ fQ'" _ f.Qs 1)I J ,Iu!> .pu \ J .p<b J I J I II! J .

5. APPLICATIONS

(27)

[OJ ±45L graphite/epoxy plate with discrete piezoceramic patches
This case study is a problem of active thermal distortion management, examined

previously by Ha et al. (1992), of a 37.2 cm x 22.8 cm x 0.75 mm [OJ ±45L graphitejepoxy
plate with fifteen 6.0 cm x 6.0 cm x 0.13 mm piezoceramic patches uniformly attached to
each top and bottom surface. A thermal gradient (50C on the top surface and - 50C on
the bottom surface) is applied to the plate. Figure 1 illustrates the geometry and the finite
element mesh of the plate. The plate is simply supported along the two edges parallel to the
y-axis and is free on the two edges parallel to the x-axis. The material properties used for
both the composite and piezoceramic materials are listed in Table I. The objective was to
apply increasing active voltages on both the top and bottom piezoceramic patches to
minimize the out-of-plane deflection induced by the thermal gradient. Additional studies
investigate the sensory response of the piezoceramic patches, as well as the development of
local stresses in the plate with all piezoceramic patches operating as actuators.

Active thermal distortion control. The resulting bending deformation with 0 Volts
applied on both surfaces of the piezoceramic patches is shown in Figure 2(a). Through
application of increasing active voltages in the piezoceramic patches, the thermally induced
deformation of the plate can be gradually eliminated. Figure 2(b) shows the reduction in
out-of-plane deflection achieved by applying an active voltage of 70 V. The active voltage
is applied on the outer surface of each piezoceramic patches, while the inner surface (i.e.,
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Fig. I. Model of graphite/epoxy plate with attached piezoceramic patches. (a) Top view. (b) Front
vie\\'.

the surface in contact with the plate) is grounded. Equal voltages are applied to both the
upper and lower piezoceramic patches. A comparison of centerline deflections (along
y/b = 0.5) predicted by Ha et al. (1992) and by the current formulation, along with the
corresponding active voltages, is shown in Figure 3. In order to obtain the same reduction
in centerline deflection as Ha et al., slightly higher active voltages were applied using the
current method (34 and 70 Volts, as compared to 31 and 61 Volts for Ha et al.). These
differences between the two analyses are most likely due to the different formulations and
elements used. Ha et al. used three-dimensional solid elements in their analysis. while the
current method utilizes a layerwise plate theory and element which assumes a constant
through-the-thickness displacement w. The present plate theory neglects certain material
properties which Ha et al. 's analysis considers (specifically C u , C23 , C~" d24, dn , and 0:3,).

Another difference is the explicit incorporation of thermal terms in the constitutive equa
tions of the current formulation, which are neglected in Ha er al.'s analysis. Nevertheless,
the overall good agreement shown in Figure 3 lends confidence to the accuracy of the
current formulation.

Sensory voltages. Besides the fully active configurations previously studied (active
potentials applied to all piezoceramic patches), other electric configurations yielding com
binations ofpiezoceramie sensors and actuators are sometimes more desirable. The current
formulation has the capability to explicitly predict sensory voltages. These sensory capa
bilities are demonstrated on an active/sensory configuration of the [0/ ± 45L graphite/epoxy
plate. The upper layer of piezoceramic patches is used as sensors, while the bottom layer
of patches is maintained as actuators. Figure 4 shows the voltages that develop on the
upper surface sensors upon combined application of a thermal gradient with an active
voltage of 70 Volts on the lower piezoelectric patches. Generally, a reduction in the sensory
voltage values was observed with increasing active voltages, which corresponds to the
reduction in out-of-plane deflection, but additional contributions remain from local stresses
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Table I. Material properties of piezoceramic (PZT G 1195N) and graphite/epoxy
(T300/976) composite [Ha et al. (1992)]

Piezoceramic Graphite/epoxy

Elastic Moduli (GPa):
E" 63.0 150.0
E22 63.0 9.0
E33 63.0 9.0

Poisson's Ratio
Vl2 0.3 0.3
V23 0.3 03
V.11 0.3 0.3

Shear Moduli (GPa):
G12 24.2 7.10

G" 24.2 2.50
G31 24.2 7.10

Density (kg/m'):
p 7600 1600

Piezoelectric Charge Constant (pm/V):
d14 O. O.

d" O. O.
de4 O. O.
des O. O.
d3l 254. O.

d" 254. O.

d" O. O.

Electric Permittivity (nf/m):
1: 11 15.3 O.
En 153 O.
D33 15.0 O.

Thermal Expansion Coefficient (/im/mT):
a" 0.9 1.1
::::in 0.9 25.2

Reference Temperature, T", CC): 20 20

and pyroelectric effects. These measured sensory voltages will provide the inferred feedback
essential for monitoring thermal distortions.

Local stresses. The development of high local stress fields in a thermopiezoelectric
laminate from the mismatch in induced thermal and piezoelectric strains is also an area of
primary concern, since it will affect the integrity of these structures. As stated previously,
one strong advantage of the layerwise approach is the accurate calculation of intralaminar
in-plane stresses and interlaminar shear stresses in piezoelectric composite laminates [Hey
liger et al. (1994) ; Saravanos and Heyliger (1995, 1996)]. Consequently, this section presents
the stress fields for the active [0/ ± 45L graphite/epoxy plate problem. In these studies, a
continuous piezoceramic layer is used instead of many distributed piezoceramic patches to
eliminate the need for a highly refined mesh. The stresses are non-dimensionalized using an
equivalent laminate moduli defined as

Figures 5(a-b) show the variation of normal stress (an) and out-of-plane shear stress
(axe) through-the-thickness under different applied voltages. The normal stress in Fig. 5(a)
increases as higher active voltages are applied reflecting the increase in piezoelectric strains,
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Fig. 2. Active compensation of thermal deformation of [OJ ±45L plate subject to lOO'e gradient.
(a) 0 Volts applied on upper and lower piezoceramic patches. (b) 70 Volts applied on upper and

lower piezoceramic patches.

which indicates that one potential tradeoff for minimizing thermal dIstortions would be
increased normal stress. In contrast, the out-of-plane shear stress (a,J in Fig. 5(b) decreases
with increasing active voltages. The normal stress u" can also be separated into individual
components as shown in Fig. 6 for the 70 V case. The three components correspond to the
three terms found on the right hand side of eqn (5) and represent the individual stresses
which are induced from the elastic, piezoelectric, and thermal effects.
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Fig. 3. Centerline (y/h = 0.5) deflections or [0/ ±451, plate.

Fig. 4. Scnsory voltages on upper piezoceramic patches or [0; ± 451, plate subject to 100 C gradient
with 70 Volts applied on lower piezoeeramic patches.
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Fig. 6. Elastic, thennal, and piezoelectric components of (In in [01 ± 45L plate subject to 100'C

gradient and 70 Volts applied on upper and lower piezoceramic patches.

[45 3/ - 45 3] graphite/epoxy plate with discrete piezoceramic patches
A numerical study was also conducted on a cantilevered [453/-453] antisymmetric

graphite/epoxy plate with attached piezoceramic patches. The plate has the same geometry
and material properties used in the previous section and is clamped along the x = 0 edge,
while the other three edges remain free. A thermal gradient (15°C on the top surface and
- 15°C on the bottom surface) is applied to the plate with 0 Volts applied on both surfaces
of the piezoceramic patches. The objective of this study is to minimize, both individually
and in combination, the thermally induced bending and twisting deformations through
application of active voltages.

Active thermal distortion control. Application of a 30C C thermal gradient, with aU
piezoceramic patches grounded, results in the combined thermal bending and twisting
deformation shown in Fig. 7(a). Through application of active voltages of varying polarities
in the piezoceramic patches, the bending and twisting deformations can be inhibited either
individually or in combination. As demonstrated in the previous problem, the bending
deformation can be managed through application of voltages which have the opposite
polarity. By applying 40 V to both the top and bottom layers of piezoceramic patches, the
bending deformation can be eliminated as shown in Fig. 7(b). The twisting deformation
remains unaffected and is now more apparent due to the removal of thermal bending. In a
similar manner, the twisting deformation of the plate can be eliminated, without affecting
the bending behavior as shown in Fig. 7(c). This requires the application of voltages with
the same polarities, specificaUy 145 V is applied to the top layer of piezoceramic patches,
while -145 V is applied to the bottom layer of piezoceramic patches. Finally, in order to
inhibit both the bending and twisting deformations simultaneously, the previous voltages
are superposed. Thus, by applying 185 V on the upper and - 105 V on the lower
piezoceramic patches, all deformations in the plate can be compensated, as shown in Fig.
7(d). These results demonstrate the potential of piezoelectric structures to selectively man
age desired thermal distortions.
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Fig. 7. Active compensation of thermal bending and twisting deformation of [45 3/ - 45,] plate
subject to 30"C gradient. (a) Initial thermal deformation: 0 Volts applied on upper and lower
piezoceramic patches. (b) Active compensation of thermal bending: 40 Volts applied on upper and
lower piezoceramic patches. (c) Active compensation of thermal twisting: 145 Volts applied on
upper and -145 Volts on lower piezoceramic patches. (d) Complete compensation of thermal
deformation: 185 Volts applied on upper and -105 Volts on lower piezoceramic patches. (Continued

overleaf)
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Local stresses. This section demonstrates the advantage of the layerwise approach in
calculating interlaminar shear stresses by examining the stress fields for the [453/ - 453]

graphite/epoxy plate. In general, classical plate theory provides accurate in-plane results
for low thickness laminates. However, the classical theory neglects interlaminar shear
stresses and becomes inaccurate in the analysis of both thick laminates and laminates with
strong inhomogeneities. In order to demonstrate the advantages of the discrete layer
theories, three different laminate thicknesses are examined corresponding to a thin plate
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Fig. 8. Through-the-thickness stress in [45,1 -453] plate subject to 30T gradient and 0 Volts
applied on upper and lower piezoceramic patches. (a) (J" at (x/a = 0.5, ylb = 0.4). (b) (I,. at

(xia = 0.9,Ylh = 0.4).

(a/h = 200), a plate of intermediate thickness (a/h = 50), and a thick plate (a/h = 10) for
the case in which a 30°C thermal gradient is applied with all piezoceramic patches grounded.
As before, a continuous piezoceramic layer is used instead of many distributed piezoceramic
patches to eliminate the need for a highly refined mesh in this study. Figure 8(a) shows the
through-the-thickness variation of normal stress (an) near the center of the plate, while
Fig. 8(b) shows the out-of-plane shear stress (o'xz) near the free end for different aspect
ratios. Figure 8(a) shows that the normal stress (away from the free end) remains relatively
insensitive to changes in the aspect ratio. In contrast, as shown in Fig. 8(b), the magnitude
of the out-of-plane shear stress near the free end increases as the laminate thickness
increases. Since both the shear stress and thickness effect are not captured by the classical
theory, this example helps to demonstrate the importance of the present layerwise approach
in the accurate prediction of critical stresses in smart thermo-piezoelectric composite plates.

6. SUMMARY

Layerwise laminate and structural mechanics were described to model the coupled
mechanical, electrical, and thermal behavior of smart piezoelectric composite laminates
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and plate structures. A finite element formulation and a bilinear 4-noded plate element
were developed and encoded into prototype software, thus establishing a significant ana
lytical and computational capability for analyzing the response of thermally stable smart
piezoceramic plate structures operating in thermal environments.

The accuracy of the formulation was compared with previously published analytical
results. Numerical studies were performed on symmetric [0/ ±451, and antisymmetric
[453/ -453] composite plates subject to thermal gradient with discrete piezoceramic patches
attached on both surfaces, which demonstrated the capability to actively manage thermally
induced bending and twisting deformations. The corresponding electric voltages developed
at distributed piezoelectric sensors were also calculated. Finally, the severe stress fields
through-the-thickness of the composite plates were predicted and the contributions of the
thermal and piezoelectric components quantified. The numerical studies have indicated the
significance of thermal effects on the performance of piezoelectric structures in extreme
temperature environments and demonstrated the capabilities of the mechanics to accurately
model such behavior.

REFERENCES

Allik. H. and Hughes, T. J. R. (1970). Finite element method for piezoelectric vibration. International Journal of
Numerical Methods in Engineering 2, 151-157.

Bailey, T. and Hubbard, J. E. (1985). Distributed piezoelectric-polymer active vibration control of a cantilever
beam. Journal of Guidance, 8, 605-611.

Chandrashekhara, K. and Agarwal, A. N. (1993). Active vibration control of laminated composite plates using
piezoelectric devices: a finite element approach. Journal of Intelligent Materials, Systems and Structures 4,496-
508.

Chandrashekhara, K. and Kolli, M. (1995). Thermally induced vibration of adaptive doubly curved composite
shells with piezoelectric devices. In Proc. 36th Structures, Structural Dynamics, and Materials Conj'erence, New
Orleans, LA, 10-13 April 1995, pp. 1628-1636.

Crawley, E. F. and de Luis, J. (1987). Use of piezoelectric actuators as elements of intelligent structures. AIAA
Journal 25, 1373-1385.

Ha, S. K., Keilers, C. and Chang, F.-K. (1992). Finite element analysis of composite structures containing
distributed piezoceramic sensors and actuators. AIAA Journal 30, 772-780.

Heyliger, P. R., Ramirez, G. and Saravanos, D. A. (1994). Coupled discrete-layer finite elements for laminated
piezoelectric plates. Communications in Numerical Methods in Engineering 10, 971-981.

Hwang, W.-S. and Park, H. C. (1993). Finite element modeling of piezoelectric sensors and actuators. AIAA
Journal 31, 930-937.

Lammering, R. (1991). The application of a finite shell element for composites containing piezoelectric polymers
in vibration control. Computers & Structures 41,1101-1109.

Lee, C. K. (1990). Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I :
governing equations and reciprocal relationships. Journal of the Acoustic Society oj' America 87, 1144-1158.

Lee, H.-J. and Saravanos, D. A. (1995). On the response ofsmart piezoelectric composite structures in thermal
environments. In Proc. 36th Structures, Structural Dynamics, and Materials Conf, New Orleans, LA, 10-13
April 1995, pp. 2876--2885.

Lee, H.-J. and Saravanos, D. A. (1996). Coupled layerwise analysis of thermopiezoelectric composite beams.
AIAA Journal 34, 1231-1237.

Mindlin, R. D. (1974). Equations of high frequency vibrations of thermopiezoelectric crystal plates. International
Journal ofSolids and Structures 10, 625-632.

Nye, J. F. (1964). Physical Properties of Crystals. The Clarendon Press, Oxford.
Rao, S. S. and Sunar, M. (1993). Analysis of distributed thermopiezoelectric sensors and actuators in advanced

intelligent structures. AIAA Journal 31, 1280-1286.
Reddy, J. N. (1987). A generalization of two-dimensional theories oflaminated composite plates. Communications

in Numerical Methods in Engineering 3,173-180.
Reddy, J. N. (1993). An evaluation of equivalent single-layer and layerwise theories of composite laminates.

Computers & Structures 25, 21-35.
Robbins, D. H. and Reddy, J. N. (1991). Analysis of piezoelectrically actuated beams using a layer-wise dis

placement theory. Computers & Structures 41,265-279.
Saravanos, D. A. and Heyliger, P. R. (1995). Coupled layerwise analysis of composite beams with embedded

piezoelectric sensors and actuators. Journal oj'Intelligent Materials, Systems and Structures 6, 350-363.
Saravanos, D. A. and Heyliger, P. R. (1997). Layerwise mechanics and finite element for the dynamic analysis of

piezoelectric composite plates. International Journal ofSolids and Structures (in press).
Shieh, R. C. (1994). Governing equations and finite element methods for muItiaxial piezoelectric beam sen

sors/actuators. AIAA Journal 32, 1250-1258.
Tauchert, T. R. (1992). Piezothermoelastic behaviour of a laminated plate. Journal oj' Thermal Stresses 15, 25

37.
Tzou, H. S. and Gadre M. (1989). Theoretical analysis of a multi-layered thin shell coupled with piezoelectric

shell actuators for distributed vibration controls. Journal oj'Sound and Vibration 132, 433-450.
Tzou, H. S. and Howard, R. V (1994). A piezothermoelastic thin shell theory applied to active structures. Journal

of Vibration and Acoustics 116, 295-302.



Generalized finite element formulation 3371

Tzou, H. S. and Tseng, C. I. (1990). Distributed piezoelectric sensor/actuator design for dynamic measure
ment/control of distributed parameter systems: a piezoelectric finite element approach. Journal 0/ Sound and
Vibration 138, 17-34.

Tzou, H. S. and Ye, R. (l994a). Analysis of laminated piezoelectric shell systems with C' piezoelectric triangle
finite elements. In Proc. Adaptive Structures and Composite Materials: Analysis and Application. ASME, Vol.
AD-45, pp. 113-124.

Tzou, H. S. and Ye, R. (l994b). Piezothermoelasticity and precision control of piezoelectric systems: theroyand
finite element analysis. Journal 0/ Vibration and Acoustics 116, 489-495.

Wang, B.-T. and Rogers, C. A. (1991). Laminate plate theory for spatially distributed induced strain actuators.
Journal o/Computers and Materials 25,433-452.


